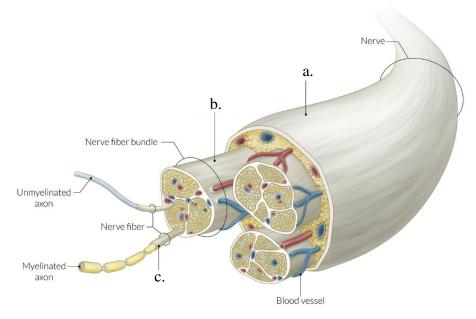

Module 7 A & P

Assignment #1

Read pages 181 - 198.

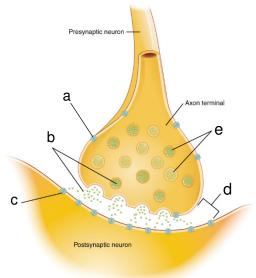

Write the answers on your own paper, not on this sheet.

- 1. Define the following terms:
 - a. Nerves
 - b. Ganglia
 - c. Spinal nerves
 - d. Cranial nerves
 - e. Afferent nerves
 - f. Efferent nerves
 - g. Somatic motor nervous system
 - h. Autonomic nervous system
 - i. Sympathetic division
 - j. Parasympathetic division
 - k. Association neuron
 - I. Excitability
 - m. Potential difference
- 2. What is the difference between afferent and efferent nerves?
- 3. When your digests food, smooth muscles churn your stomach. Is this being controlled by:
 - a. The afferent or efferent division of the PNS?
 - b. The somatic motor nervous system or autonomic nervous system?
 - c. The sympathetic or parasympathetic division?
- 4. Identify the parts of the neuron below:

5. Name the six types of neuroglia AND their functions.

6. Identify the structures in the nerve below:

- 7. What are the differences between a sensory nerve, a motor nerve, and a mixed nerve? What is the most common type of nerve?
- 8. An axon is covered by an oligodendrocyte. Is it part of the CNS or the PNS? Will the axon regenerate if severed?
- 9. An axon is covered by several Schwann cells. Is it part of the CNS or the PNS? Will the axon regenerate if severed?
- 10. At one point in an axon, there is a high concentration of potassium ions outside of the cell and a high concentration of sodium ions inside the cell. Is the neuron at rest?
- 11. At one point in an axon, there is a high concentration of sodium ions outside of the cell and a high concentration of potassium ions inside the cell. Is the neuron at rest?
- 12. A stimulus creates a change in the potential difference between the inside and outside of the cell, but no action potential is created. What is this called?
- 13. The following steps occur in creating an action potential. Put them in the correct order.
 - a. Sodium gates open, and sodium ions rush into the cell because of diffusion.
 - b. Sodium and potassium gates are closed. Sodium-potassium exchange pumps bring the system back to its original state.
 - c. Sodium and potassium gates are closed. Sodium ions are concentrated outside the cell, potassium ions are concentrated inside the cell.
 - d. Sodium gates close and potassium gates open. Potassium rushes out of the cell by diffusion.


Module 7 A & P

Assignment #2

Read pages 199 – 210.

14. What keeps an action potential on an axon from stimulating another action potential which will travel back towards the cell body?

- 15. Why do myelinated axon carry action potentials faster than unmyelinated axons? What is this process called?
- 16. When you cut yourself, you feel an instant, sharp pain followed later by a dull ache. Why do you get these two different pains, and why do they come in that order?
- 17. If you press your fingers lightly against an object, you feel a certain amount of pressure. Pressing harder against that same object causes you to feel more pressure. What is the difference between the action potentials in these two situations?
- 18. Identify the structures in the excitatory synapse below:

- 19. A signal needs to travel a long, long way in the body. It needs to have exactly the same properties at its destination as it did when it started. Should the signal be sent along a very long axon or a few shorter axons which are connected by synapses?
- 20. The potential difference in a postsynaptic neuron changes from -85 mV to -95 mV at the point of a synapse. What has happened? What can you say about the relative amounts of potassium and sodium ions outside of the membrane?
- 21. Twelve action potentials are traveling down an axon in a very short period of time. They reach a synapse, and the postsynaptic neuron sends only two action potentials down its axon. Is this an excitatory synapse or an inhibitory synapse?
- 22. List the three kinds of circuit arrangements which can be formed by neurons and tell what each one is used for.

Honors:

- 23. Read the article "Stem Cell Treatment for ALS" in the Mayo Clinic booklet about nerve regeneration (page 11). Describe the research that is being done to treat ALS.
- 24. Read the article "Peripheral Nerve Repair" in the Mayo Clinic booklet about nerve regeneration (page 13). Describe the technique that is being used to repair peripheral nerve damage.